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The laminar flow in a curved channel is studied numerically to analyse the initial 
formation, development and interaction phenomena of an array of centrifugally 
induced longitudinal vortices arranged across the span of the channel. Simulations 
employing streamwise periodic boundary conditions (temporal model) as well as 
inlet-outlet conditions (spatial model) are carried out. In the temporal approach the 
interactions (pairing of vortices and growth of new vortex pairs) of fully developed 
vortex pairs are time-dependent, whereas in the spatial approach these events are 
inherently steady and concern vortices not in their fully developed state. The initial 
spatial development of the vortices is in excellent agreement with results of a linear 
stability analysis up to fairly large disturbance amplitudes. In the nonlinear regime a 
good agreement with experimental results has also been found. The receptivity of the 
flow is very important in a convectively unstable situation such as the present one and 
different behaviour is found at fixed Reynolds number (equal to 2.43 times the critical 
value for the onset of Dean vortices): the flow can be either steady or undergo a 
continuous sequence of merging and splitting events, depending on the inlet conditions. 
In the latter situation decorrelated patterns of low- and high-speed streaks are 
produced in streamwise-spanwise planes and they bear several similarities to near-wall 
coherent structures of turbulent boundary layers. 

1. Introduction 
The flow in curved channels and ducts has been, and still is, the object of intense 

investigations, because of its intrinsic interest, as well as its relevance to several 
technological and physical problems that involve curved passages and surfaces, such as 
turbine blades, airfoils, heat exchangers, river flows, etc. The problem is commonly 
known as the Dean problem, from the name of the first researcher to analyse it. Dean 
(1928) found that above a certain critical value of a dimensionless number, that became 
to be known as the Dean number and is an appropriate combination of a Reynolds 
number and a curvature parameter, two-dimensional, steady, longitudinal vortices 
develop on top of a basic Poiseuille-like flow state. These secondary flows, produced 
by an unstable stratification of angular momentum, are such that the flow spirals as it 
proceeds downstream. Secondary motions alter the wall stress distribution and heat 
transfer characteristics: as such, it is important to be able to understand and predict 
them. 

If solid sidewalls are present in a curved duct, Ekman vortices, induced by the 
sidewalls, are produced at all values of the Reynolds number, Re. When curved ducts 
of small aspect ratio (ratio between the span and the channel height) are considered, 
the few Dean vortex pairs that appear in the cross-section of the duct above a threshold 
value of Re interact with the Ekman vortices. The study of such interactions is beyond 
the scope of the present investigation. However, most work published on Dean vortices 



628 A. Bottaro 

deals with small- ( < 4) aspect-ratio curved ducts. Thangam & Hur (1990) studied the 
problem through finite volume simulations for steady two-dimensional fully developed 
flow. They found that, typically, one pair of vortices is contained in the cross-section, 
but eventually at a certain critical Reynolds number a new vortex pair appears to ‘pop’ 
out of the outer wall. This is consistent with previous two-dimensional theoretical 
studies (Winters 1987) which indicated that four different solutions may exist: three 
symmetric solutions (two with two pairs of vortices and one with one pair) and an 
asymmetric one. The only study of spatially developing flow in a curved duct of small 
aspect ratio (equal to one) has been performed by Ravi Sankar, Nandakumar & 
Maslihay (1988). They performed finite volume simulations of the steady parabolized 
Navier-Stokes equations, to verify that 2- and 4-cell solutions appear. Interestingly, 
they found spatial streamwise oscillations which corresponded to the creation and 
annihilation of a small vortex pair near the outer wall (cf. their figure 6). Most of the 
literature relevant to the small-aspect-ratio case is contained in the papers cited above. 

When the aspect ratio is large, several pairs of cells may coexist across the span of 
the cross-section. This case is most often studied by employing periodicity in the 
spanwise direction, but work by Finlay & Nandakumar (1990) has focused on the 
Ekman vortices induced by no-slip sidewalls and their interaction with the Dean 
vortices. Fully developed flow was considered, which means that the spatial 
development up to the parallel flow state was ignored. The first three-dimensional 
numerical work on a periodic array of Dean vortices arranged across the span was 
carried out by Finlay, Keller 8z Ferziger (1987, 1988). They performed calculations by 
a spectral technique in a channel with periodic boundary conditions in the spanwise 
and streamwise directions. In the spanwise direction only one pair of vortices was 
included. They adopted the so-called temporal model in which a source term, 
representing a pressure gradient, drives the flow, which is periodic in the streamwise 
direction. Even though temporally developing simulations may shed some light on the 
physical processes under consideration, the spatial development (from its linear 
inception on) is only mimicked. Furthermore, by considering a computational box 
with only one pair of vortices, vortex interaction mechanisms cannot be properly 
represented. 

Recently, Bottaro, Matsson & Alfredsson (1991) and Matsson, Bottaro & Alfredsson 
(1991) have provided some comparisons between experiments and numerics on the 
spatial development of the flow in a curved channel of large aspect ratio. The adoption 
of a large aspect ratio is important because experiments (Ligrani & Niver 1988; 
Matsson & Alfredsson 1990, 1992) have shown that complex vortex interactions may 
occur, resulting in the creation and cancellation of vortex pairs, with consequent 
modification of wavelengths. These mechanisms are likely to play a very important role 
in the transition process, and as such deserve a study in themselves. The problem of 
interaction of vortex pairs has been studied theoretically by Guo & Finlay (1991). They 
performed a linear analysis of the stability of axisymmetric vortices to spanwise- 
periodic perturbations and reported that in curved channel flow there is a so-called 
generalized Eckhaus stability boundary. It is a closed curve contained inside and 
tangent, at the critical point, to the linear stability curve for the onset of Dean vortices 
in the wavenumber/Re plane. Outside of this closed curve the flow is unstable to 
spanwise disturbances. The critical point defines Re,, the critical Reynolds number for 
the onset of Dean vortices. Above Re/Re, = 1.7 a system of infinite spanwise length 
is always unstable to spanwise perturbations. If the spanwise wavenumber is too large 
two vortex pairs will merge to form one pair, and the wavenumber will be reduced. If 
it is too small, a new pair of vortices will form between two existing pairs, causing the 



Longitudinal vortices in curved channel flow 629 

wavenumber to increase. Such events are defined as merging and splitting of vortices. 
It is clear that the Eckhaus instability is of fundamental importance in the wavenumber 
selection process. 

Merging and splitting events occur in a variety of circumstances. They have been 
noticed to occur in Gortler vortices (Bippes 1978; T. Maxworthy 1990, personal 
communication), as well as in plane rotating channel flow (Yang & Kim 1991; 
Alfredsson & Persson 1989). Mutabazi et al. (1990) report defects in the Taylor-Dean 
system, corresponding to rolls that undergo splitting events. These defects are found to 
be responsible for a decorrelation of patterns and as such they represent an ideal model 
on which to test turbulence theories. Mergings of spanwise vortices have been recently 
described in impulsively started Taylor flow (Takeda, Kobashi & Fisher 1990) and 
Gortler flow (Ikeda & Maxworthy 1990), in inclined free-convection boundary layers 
(Chen et al. 1991), and both merging and splitting of spanwise structures have been 
observed in acoustically forced shear layers (Browand & Prost-Domasky 1990). 
Natural convection of binary fluid mixtures constitutes another environment in which 
defects (merging and splitting) are observed (Bensimon et al. 1990). 

Recent theories of phase-turbulence (Coullet & Lega 1988; Coullet, Gil & Lega 
1989) propose that defects may move around in orderly wave patterns generating 
‘topological turbulence’. These studies are based mostly on two-dimensional model 
systems (Ginzburg-Landau equations), but the recent experiments of thermal 
convection of a binary fluid by Bensimon et al. (1990) in a large-aspect-ratio annular 
container reveal that ‘the evolution of the transient can be largely described in terms 
of the production of defects’. They found that these defects allow a region of flow with 
one wavenumber to evolve spatially to another wavenumber. Similarly, the plane 
rotating Poiseuille flow simulations (with two periodic directions and a long spanwise 
length) by Yang & Kim (1991) indicate that a complex vortex merging process occurs, 
the outcome of which, at the statistically steady state, is to reduce the number of vortex 
pairs from seven to three. Ligrani & Niver (1988) in their experiments on curved 
channel flow report also that the vortices may undergo a repeated sequence of merging 
and splitting in a range of Re/Re, around two. 

At Reynolds number sufficiently larger than Re,! another destabilizing phenomenon 
takes place. It is termed the secondary instability of the Dean flow and corresponds to 
short-wavelength travelling waves. Theoretical studies on these waves have been 
performed by Finlay et al. (1987, 1988) through linear stability analysis and 
Navier-Stokes simulations, and Bennett & Hall (1988) who performed an asymptotic 
analysis. Experiments have been carried out by Kelleher, Flentie & McKee (1980), 
Ligrani & Niver (1988) and Matsson & Alfredsson (1990, 1992). Experimental results 
provided some confirmation of the theory. In particular, it appear that these waves - 
sometimes referred to as twists - go unstable at first in the region of low streamwise 
velocity where the flow moves away from the outer wall (Matsson & Alfredsson 1992) 
because of a shear instability (Finlay et al. 1987, 1988). 

The present work considers a channel for which recent experimental measurements 
are available (Matsson & Alfredsson 1990, 1992; Bottaro et al. 1991 ; Matsson et al. 
1991). The curvature ratio y, equal to the ratio of inner radius ri to outer radius To, is 
taken to be 0.974. Since it is fixed, we will not introduce the Dean number (which 
depends on y )  but we will consider only the Reynolds number, based on the bulk 
velocity U in the channel and the channel height, h. The area of the cross-section is 
denoted A .  The mean radius of curvature of the channel, a(r, + ro), is equal to 38h. In 
the present parameter space, the critical Reynolds number Re, for the onset of Dean 
vortices is 225, and the critical wavenumber p, = 21th/L is 3.97, where L is the spanwise 
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wavelength. From linear stability theory (Finlay et al. 1987) it is found that the critical 
conditions depend on y .  The larger y is the higher Re, is and the smaller p,. For fixed 
y, the linearly most unstable wavenumber increases with Re, and, for example, at 
RelRe, = 2.43 it is equal to 5.76. 

A channel of aspect ratio equal to nine with a periodic spanwise direction is 
considered in most of the computations. This length is sufficient to allow the 
development of several vortex pairs, so that wavelengths are selected naturally and not 
imposed?. This is an important requirement if vortex interactions resulting from the 
Eckhaus instability are to be considered. 

The purpose of the present work is to carry out the first three-dimensional 
incompressible Navier-Stokes spatially developing simulations for an array of 
longitudinal vortices, under conditions of steady and fluctuating inlet forcing. 
Comparisons with available experimental data are provided and some insight into the 
physics is gained, particularly in the developing region. Further, we set out to verify 
numerically some of the phenomena described by Guo & Finlay (1991) concerning the 
Eckhaus instability and elucidate the importance of vortex interaction processes in the 
dynamics of the flow. 

2. The relative merits of spatial versus temporal simulations 
The numerical approach taken in this work is defined as the spatially developing 

approach, in contrast to the more commonly used temporally developing technique. In 
this section we will try to point out strengths and weaknesses of both approaches with 
reference to the specific case of curved channel flow, and justify our choice for 
performing spatial simulations. 

The temporal approach mimics the flow development by relating the nonlinear 
streamwise development of the motion to the temporal one, while the spatial approach 
tries to reproduce it by the adoption of suitable inlet-outlet boundary conditions. Up 
to the onset of the secondary instability a temporally developing simulation is usually 
carried out on a two-dimensional calculation domain. A channel cross-section is 
considered and all streamwise derivatives in the equations of motion are eliminated 
(parallel-flow approximation). When streamwise gradients become significant (when, 
for example, streamwise waves - denoting the secondary instability - occur) a three- 
dimensional channel with periodic streamwise conditions is used. The flow is driven by 
a forcing term S, which represent an average streamwise pressure gradient. In channel 
flow, when S is small the parallel-flow solution is a shifted parabola with the maximum 
towards the inner wall. This is the subcritical one-dimensional curved channel flow 
solution, sometimes referred to as CCPF (curved channel Poiseuille flow), and 
expressed as 

u = w - y", p Inp + c 2 0  -p-')I, 

l 1  with p = -, r c, = [&(1ny)'-0.25(1-y2) , c2 = c, 
rn 

When S increases above a critical value a steady vortical flow develops. By further 
increasing S merging and splitting of vortex pairs take place. Such events can be 
unsteady in a temporally developing simulation, and repetitive merging and splitting 
events occur. If S is held constant, oscillations in mass flow rate will result ; if the mass 

t Note, however, that the average wavenumber is bound to be a multiple of 2n/9 (i.e. 4.19, 4.89, 
5.59 ... ). 
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flow rate is held constant, oscillations in average pressure gradient will result. The latter 
is the case of Guo & Finlay (1991), cf. their figure 20. At yet larger S, a secondary 
instability will set in. This is another source of unsteadiness. To mimic the spatial 
development one normally introduces a convection velocity in the streamwise direction 
and matches the experimental results (if they are available) a posteriori. Most of the 
features of the flow can then be reproduced. However, it should be noted that this 
convection velocity is, in general, not constant throughout the different flow regimes 
(see, e.g. Liu & Domaradzki 1990, for comments related to the Gortler problemj; 
furthermore, there are no reasons why it should remain uniformly constant within the 
same cross-section at any given time or for the whole flow. One can envisage the 
occurrence of this situation at the onset of the secondary instability, when the upwash 
region of the vortices (where the flow moves away from the outer wall) starts oscillating 
on a fast timescale, whereas the rest of the flow remains stationary (Matsson & 
Alfredsson 1992). Typically, the agreement between experiments and computations 
based on the temporal model deteriorates as time increases; eventually, temporal 
simulations break down (see e.g. Liu & Domaradzki 1990). It is also noteworthy to 
mention that different simulations of the flow corresponding to the experiments of 
Swearingen & Blackwelder (1987) lead to the adoption of convection velocities 
differing from one another by 14% to achieve a proper matching (cf. Liu & 
Domaradzki 1990; Sabry & Liu 1991). 

Another strong argument against temporally developing simulations invokes the 
convective nature of the instability. Although no decisive proof has yet been provided, 
it is generally accepted that Dean flow (as well as Gortler flow) represents a 
convectively, rather than an absolutely, unstable flow. Roughly speaking this means 
that imposed perturbations will grow and travel downstream. The importance of the 
distinction between convective and absolute instability has been highlighted by Huerre 
& Monkewitz (1990). When adopting streamwise-periodic boundary conditions in an 
incompressible flow, a disturbance anywhere in the flow would propagate upstream 
through the periodic boundary and the convective nature of the instability would be 
lost. 

Finally, when analysing the secondary instability through temporally developing 
simulations, the streamwise wavelength will be dependent on the streamwise length of 
the computational domain. This is so because, due to streamwise periodicity, only an 
integer number of cycles (waves) can be accommodated within a fixed length. If the 
resulting wavelength is not the most unstable one (which is the wavelength likely to be 
selected naturally in an experiment) the predictions of frequency, wavenumber, type of 
instability (sinuous or varicose) etc., will be poor or, at the least, uncertain. 

On the other hand, the spatial approach is not exempt from drawbacks, but they 
seem to be more easily dealt with. The main problem lies in the correct specification 
of open boundary conditions. If the physical flow conditions at the boundaries could 
be specified exactly there should be no error arising from the truncation of the domain. 
In practice, even this idealization does not hold, because the solution of the discretized 
equations does not match exactly the continuum field. As such, the specification of 
Dirichlet or Neumann conditions - which are, mathematically speaking, perfectly 
reflecting conditions - generates at the boundaries small perturbations which might be 
reflected back and forth in the computational domain. Since in the present flow 
situation a Dirichlet condition is used at the inlet, a non-reflecting outlet boundary 
condition should be used at the exit cross-section. A perfectly non-reflecting condition 
does not exist for incompressible flows, but it is possible to specify conditions that 
produce minimum numerical reflection back into the computational domain. 
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A more intricate phenomenon that is known to appear sometimes is a resonance 
effect between inlet and outlet sections. This is caused by the reflection of pressure 
waves between inlet and outlet boundaries (see Buell & Huerre 1988 and Huerre & 
Monkewitz 1990 for a discussion of the problem). The results is that a locally 
convectively unstable flow can be transformed into an absolutely unstable flow, with 
serious consequences for flow definition and control. The phenomenon is such that 
imposed (or naturally occurring) perturbations that are being convected outside of the 
domain are fed back, almost instantaneously, at the entrance of the domain itself. For 
the case of the Dean flow this undesirable effect (which is the analogue of the facility 
effect plaguing several experimental installations, Huerre & Monkewitz 1990) can be 
dealt with by the adoption of proper inflow conditions. By proper we mean Dirichlet 
conditions expressing the CCPF plus a steady perturbation of sufficiently large 
amplitude to overrule the fluctuating perturbation generated by the feedback 
mechanism. In &4 and 5 results for the two cases of inlet flow steadily and randomly 
forced are presented. 

3. Numerical technique 

cylindrical polar coordinates (0, r, z )  are 
The governing equations of conservation of mass and momentum expressed in 

where 

The streamwise velocity is denoted u, the normal velocity is u and the spanwise 
velocity is w. The scalings used are the channel height h for length, the bulk speed U 
for velocity, h/U for time, and p U 2  for dynamic pressure, where p is the (constant) 
density of the fluid. No-slip Dirichlet conditions for the velocity are applied at the solid 
boundaries. The spanwise direction is taken periodic. Open boundary conditions 
(inflow and outflow) need to be specified. In the present flow situation the outflow 
conditions constitute less of a problem than the inflow conditions. The reason for this 
is that for our problem there is no backflow at the outlet boundary and the flow there 
is almost parallel. As such, convective condi.tions such as the ones described by Lowery 
8z Reynolds (1986) and Bottaro (1990) are suitable. Alternative open conditions 
proposed in the literature require the addition of buffer regions at the two ends of the 
physical domain. Danabasoglu, Biringen & Street (1989) use the buffer domain 
technique to solve for Tollmien-Schlichting waves in a two-dimensional computational 
domain. In their implementation the buffer domain has the same length and the same 
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number of mesh points as the physical domain. In three dimensions such a procedure 
is extremely demanding on computational resources. 

For the reasons outlined above, we choose conditions expressing the vanishing of the 
average convective derivative of each velocity component. These conditions are suited 
to time-dependent problems and have been shown to produce negligible upstream 
reflection of outgoing waves in a PoiseuillelBCnard travelling wave problem (Bottaro 
1990). In dimensionless units they read: 

The quantity c is a wave speed and in the present situation it has been chosen constant 
and equal to the bulk velocity. It was found that different choices of the phase velocity 
affect the solution only marginally in a limited neighbourhood of the exit cross-section. 
Similar behaviour has been observed by others (see e.g. Pauley, Moin & Reynolds 
1990). The above conditions have been discretized in space and time by first-order 
schemes, as in Bottaro (1990). The inlet condition is CCPF with, eventually, a steady 
perturbation superimposed on to it to drive the vortex development and lock the 
vortices into place. The problem of inflow and outflow boundaries is crucial as 
discussed in $2, and possible consequences of the inlet-outlet conditions are addressed 
in $5.  The angle subtended by the channel is taken to be equal to 100" in the steady 
forced case ($4) and 180" in the randomly forced case ($5 ) .  In both cases, the 
streamwise grid employs 130 points; this is sufficient to resolve the long streamwise 
scales of the motion before the onset of twists. The comparison with the linear theory 
for spatial growth of longitudinal vortices in 0 (reported in $4) is particularly 
reassuring with respect to the streamwise numerical resolution, at least for small 0. A 
fine resolution is employed in the cross-section and the grid, which is staggered, is 
composed of 160 uniformly spaced spanwise points and 24 normal points, smoothly 
stretched to resolve the boundary layers near the walls. Detailed comparisons with 
velocity profile measurements on different streamwise cross-sections provide partial 
confirmation that the mesh is adequate. 

The spatial discretization, in the finite volume approximation, adopts a second-order 
central difference scheme to treat total (convective and diffusive) fluxes. Solutions are 
obtained by fully implicit time-marching. Inner iterations are performed at each time 
step to ensure that the maximum pressure and velocity residuals decrease by at least 
four orders of magnitude. The dimensionless time step dt is taken equal to 0.1. It is 
sufficiently small to provide confidence in the time accuracy of the numerical 
procedure : ten time steps advance a fluid element about one streamwise mesh width at 
speed U on the longer channel. Smaller steps produce identical signals, while with 
bigger time steps (dt = 0.3) slight deviations in time histories occur when there are 
sharp temporal gradients. The adoption of very small time steps is imposed, when the 
investigation of the real transient is the primary objective, because the time error is 
formally of first order. When we are only focusing on the steady-state solution the 
restriction on dt can be somewhat relaxed, although Yee & Sweby (1992) have 
elucidated some of the consequences of selecting 'large' time steps. (For example, the 
basin of attraction of a steady solution can be completely altered and spurious chaotic 
solutions may appear when the Courant number is chosen too close to one.) The 
SIMPLER pressure correction technique of Patankar (1980) is used to treat the pressure 
coupling. The computational domain is scanned with radial and azimuthal zebra 
relaxation sweeps. Three sweeps are performed for pressure and pressure correction 
equations and one each for the three momentum equations. This type of relaxation 
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FIGURE I .  lsolines of (a) the streamwise perturbation velocity in the cross-section for a stationary 
axisymmetric flow, Re = 397 and (b)  a time-dependent flow with an incipient splitting process by the 
outer wall, Re = 563. Isoline spacing is 0.075. In (c) the Reynolds number is plotted with respect to 
to for, from the left, Re, = 710, 550, 450. In the first two cases the oscillations of mass flow rate at 
constant pressure forcing produce actual Reynolds numbers that vary in the intervals [542, 5861 and 
[449, 4811, respectively. In the third case shown the flow is stationary and Re = 397. 
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FIGURE 2. Secondary velocity field at time (a) 7, (b)  7 +  125, (c) 7 +  250, ( d )  7+375, and with Re = 
397,397, 384 and 393 respectively. Notice that by the end of the process the vortices have shifted by 
half a wavelength. 
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does not eliminate recursion but allows faster convergence than, for example, 
Gauss-Seidel sweeps, because all inner loops can be vectorized. The resulting 
tridiagonal systems of linear equations are solved by the use of the Thomas algorithm. 

3,l.  Temporally developing results 
The code has been extensively tested against published results and against other codes. 
In particular, we report here on a comparison with the results of Finlay et al. (1987) 
for the case of axisymmetric curved channel flow. Two different computer codes have 
been employed for the comparison : the present one and one due to Marx (1991) which 
solves using finite volumes for the steady three-dimensional Navier-Stokes equations 
in general curvilinear coordinates, employing the artificial compressibility formulation. 
To compute axisymmetric results we have considered a three-dimensional domain of 
angular opening 10" and with streamwise periodic boundary conditions. The spanwise 
length of the domain is 27r/PC, with P, = 3.97, and the curvature ratio y is 0.974. The 
initial condition is CCPF plus small random noise, [-0.01, 0.011, on u. A constant 
forcing term S is added to the 8-momentum equation, equal to 

1 2[32r3 - 27r2(ri + ro) + 5ri ro(ri + r,)] S=- 
Re, rV0.- rJ2(r, + ro) 

and corresponding to the pressure gradient needed to drive CCPF at Re,. Re, is the 
initial Reynolds number in the simulations when CCPF plus noise is used as initial 
condition. It is based on the bulk speed U,. For supercritical conditions CCPF is 
unstable and the forcing is insufficient to maintain the initial mass flow rate; as a 
consequence the flow decelerates before reaching a final state, with Dean vortices, 
characterized by a new Reynolds number. This new Reynolds number is defined based 
on the computed average velocity. The steady results we obtain are converged to 
machine precision. Calculations have been performed on two grids, the finer of which 
contains 602 points in the cross-section and 10 streamwise nodes. It should be noted, 
however, that the coarser mesh, employing 302 nodes in the cross-section and 10 
streamwise nodes, is enough to produce grid-converged results with both codes 
employed, in excellent agreement with the reference solutions. At Re, = 500 the 
artificial compressibility code fails to converge to a steady state, and the 'pressure 
correction ' code shows a regular, time-periodic signal. The coarse-grid simulations 
overestimate the period of the oscillations of Re by about 4%, and overestimate the 
amplitude of the oscillations by less than 1 %, when compared to the fine-grid results. 
The signals of Re in time are almost coincident, and the dynamics of the events found 
is the same with both grids. 

In figure 1 the streamwise velocity perturbation (i.e. the near-parabolic undisturbed 
streamwise velocity profile has been subtracted) is shown for two values of the 
Reynolds number. Also plotted is the time behaviour of Re, for fixed constant forcing 
(fixed Re,). (Note that time in figure 1 is to  and is made non-dimensional with reference 
to U,, the velocity that defines Re,.) The state with one vortex pair in the cross-section 
ceases to be stable for Re/Re,  between 1.78 and 1.95 (Finlay et al. 1987, report 1.78 c 
Re/Re,  c 2.19 while Bennett & Hall 1988, for a similar configuration, report results 
that suggest vortex doubling at Re/Re,  z 2.3). For Re around 460 a periodic sequence 
of merging and splitting processes starts to take place. A similar situation was 
encountered in the numerical simulations of Dean flow by Ravi Sankar et al. (1988). A 
repetitive sequence of merging and splitting has also been observed experimentally by 
Ligrani & Niver (1988) for Re/Re,  z 2, y = 0.979. The occurrence of this phenomenon 
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FIGURE 3. Initial velocity field for the simulations : (a)  secondary flow ; (b)  deviation of u from CCPF. 
Interval in the isolines of u’ is 0.003; zero lines omitted. Here -0.021 144 < u’ < 0.015595, 
-0.001 423 < u < 0.001 243, -0.001 336 Q w < 0.001 483. 

has been predicted by Guo & Finlay (1991) who found that when the wavenumber of 
the basic flow is equal to 3.97, the parallel-flow state is always unstable to spanwise 
perturbations for Re/Re, as low as 1.14 (cf. their figure 6). The latter explains the 
presence of oscillations in figure I(c). The forcing S supplied (Re,, = 450) is sufficient 
to drive a flow characterized by one vortex pair in a box of spanwise length 2x/,!3, at 
Re = 397. When the forcing is increased, the Reynolds number tends to grow and a 
splitting is attempted. The pressure gradient is however insufficient to maintain the two 
pairs of Dean vortices in the box chosen so that the splitting is reversed and Re 
decreases. The same periodic behaviour is described by Guo & Finlay (1991, figure 19), 
whereas Finlay et al. (1987) find a steady solution with two vortex pairs for Re as large 
as 492 in a box of spanwise wavenumber p,. The latter finding could possibly be 
explained by a non-uniqueness of the axisymmetric solutions. The fact of not having 
found merging and splitting in the present simulations for Re as large as 1.78 Re, is 
caused by having chosen a computation box of small spanwise wavelength. 

When a channel of twice the spanwise length is considered the Eckhaus instability 
mechanism manifests itself earlier. This is shown in figure 2, where the secondary flow 
in the cross-section is plotted at four points equidistant in time, within one period. Here 
we have chosen Re, = 450, and it is found that Re oscillates regularly between 384 and 
397. At time 7 ,  Re is at its maximum and two vortex pairs coexist in the cross-section. 
They are exact replicas of the vortex pair shown in figure 1 (a) .  At 7 +  125 (dimensionless 
time interval is in units of t o )  Re is still at its largest but in the region for which 
zpJ27c z 0.6 a splitting starts near the concave wall. As the splitting takes place (and 
the new vortex pair grows in strength) neighbouring pairs move apart forcing a merging 
at zpC/2x z 1.6. This event, consisting of the annihilation of two neighbouring 
counter-rotating cells is completed at 7 + 375. At this time the vortices present at 7 seem 
to have moved by half a wavelength in the spanwise direction. This apparent 
movement is a direct consequence of the merging and splitting events. Exactly the same 
sequence of events is described by Guo & Finlay (1991) in their figure 19, for a Re held 
constant and equal to 400 (Guo & Finlay take the option of working at constant mass 
flow rate and variable average pressure gradient). 

Before concluding this section we emphasize two points : 
(i) The spanwise length of the computational domain is one of the factors that 

determines vortex interaction behaviour when the temporal model is employed ; 
(ii) We have found periodic merging and splitting events in a temporally developing 
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FIGURE 4(4. For caption see facing page. 
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simulation, in contradiction with the experiments of Matsson & Alfredsson 
(1992) which describe steady merging and splitting events. 

In the remainder of the paper we abandon the temporal approach to pursue the 
spatially developing one. 
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FIGURE 4. (a) Streamwise perturbation velocity at Re = 547. (b)  Ensemble averages of the 
measurements of Matsson & Alfredsson (1992). Angular spacing between consecutive sections is 
0.192. 

4. Steady Dean flow; controlled inlet forcing 
In what follows the developing flow for Re > Re, is studied through spatial 

simulations which employ the inlet-outlet boundary conditions discussed in 0 3. To 
trigger the vortex development, a steady inlet perturbation characterized by vortices in 
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FIGURE 5(a). For caption see facing page. 

their early linear stage is applied on top of the CCPF. The inlet solution could have 
been taken from the eigenfunctions of the linear analysis, but we have chosen instead 
to use a divergence-free velocity field taken from a previous simulation (see $ 5 ) .  This 
choice allows the presence of vortices at different development stages and with different 
individual wavelengths in the cross-section, a situation which is close to the 
experimental conditions. In figure 3 we show the flow field used as inlet (and initial) 
condition for the simulations described in this section. If  we define the difference 



Longitudinal vortices in curved channel flow 64 1 

FIGURE 5 .  (a) Streamwise perturbation velocity at Re = 970. (6) Measurements of Matsson & 
Alfredsson (private communication). Angular spacing between consecutive sections is 0.384. 

between the streamwise velocity and the CCPF as u’, the inlet condition chosen is 
characterized by 

ii = (f [ A  up’ dr dr): = 0.003 574 1, 

C = (f lA o2 dr d z r  = 0.000 307 7, 

iii = w2drdz): = 0.0003887, 

where ii, 0 and w represent average perturbation quantities and A is the cross-sectional 
area of the channel. As a reference we should remember that the average streamwise 
velocity of the CCPF (which is used as velocity scale) is equal to one. 

The flow fields obtained for Re = 547 (Re/Re ,  = 2.43) and 970 (4.31) are stationary. 
They are shown, together with experimental results obtained on the same configuration 
by performing hot-wire measurements in air, in figures 4-7. The Reynolds numbers 
considered are, respectively, 14 and 8 times smaller than the critical Reynolds number 
for the growth of Tollmien-Schlichting waves in plane Poiseuille flow. Additionally, 
Re = 970 is smaller than the experimentally measured transitional Re value for plane 
Poiseuille flow. In figures 4 and 5 we have plotted the streamwise disturbance velocity 
at different cross-sections. The sections shown in figures 4(a) and 5(a) correspond to, 
from the top, 0 = 0.532, 0.668, 0.804, 0.941, 1.077, 1.214, 1.350, 1.486, 1.623, 1.745. 
The angular spacing between two consecutive cross-sections is 0.136 (except for the last 
two cross-sections). The spacing of the isolines is 0.075, in all of the curves presented, 
unless otherwise indicated ; negative perturbation velocities are shown dotted (or 
dashed), positive velocities are shown with continuous lines, the zero line is omitted. In 
figure 4 (b) an ensemble average of the experimental measurements, with the mirror 
symmetry about the radial upwash plane explicitly enforced, is shown for Re = 547. 
The angular spacing between consecutive cross-sections is equal to 0.192. Pictures of 
the complete cross-sections measured have already been presented in Bottaro et al. 
(1991). For Re = 970 experimental results on three cross-sections spaced an angle of 
0.384 apart from each other are shown in figure 5(b). 

The first thing to remark is that the vortices in the simulations are locked into place 
without ‘wandering ’ in the spanwise direction, in full agreement with the experiments 
with which we are comparing, and evolve steadily from the inlet to the outlet section. 
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FIGURE 6. Computed average streamwise perturbation velocity z i  versus 0, for Re = 547 (-------- ) 
and Re = 970 (-----). Corresponding linear stability results are shown as continuous lines. 
Experimental results by Bottaro et al. (1991) at Re = 547 (*) and Matsson & Alfredsson (1992) at 
Re = 970 (0). 

The absolute streamwise positions are not significant, since the inlet disturbance levels 
in experiments and simulations are different, so that a direct comparison would be 
meaningless. Rather, we compare the numerical results with the measured ones after 
shifting the experimental origin in 8 so as to match its disturbance level with the 
disturbance level present in the simulations. One such comparison is presented in figure 
6 where we have plotted ii versus 8. There we have also plotted the curves of linear 
spatial growth for the two Reynolds numbers considered and for /I = 4.89 (which is the 
average wavenumber in the simulations).f They are represented by the function 

0.003 574 1 exp [ m e l ~ ] ,  
where 7 = 2(r0 - r,)/(ro + rJ, m = 0.1202 at Re = 547 and m = 0.1698 at Re = 970. 
The agreement between linear theory and the Navier-Stokes results is excellent up to 
8 = 0.6. At this 8, a very large disturbance amplitude in u (of the order of 10 % of the 
bulk velocity) is reached and nonlinear effects become important. Notice in figures 4(a) 
and 5(a) that regions of positive and negative perturbation at 8 = 0.532 have an 
approximately circular shape, as one would expect in the linear disturbance range, and 
are concentrated near the concave wall. Negative perturbations are associated with 
low-momentum fluid moving away from the outer wall, while positive perturbations 
are accompanied by movement of high-velocity fluid towards the wall. Further 
downstream, the positive perturbation regions tend to elongate in z (near the concave 
surface) and squeeze, locally, the negative perturbations. The negative perturbations 

t The most unstable wavenumber from linear stability at Re = 2.43ReC is equal to 5.76. According 
to Guo & Finlay (1991) the wavenumber here should, however, be selected by the Eckhaus instability, 
and be approximately equal to 4.6. The experiments by Bottaro et al. (1991) show an initial average 
wavenumber equal to 5.8, which decreases downstream, because of merging processes, to 4.5. Large 
individual variations in B are present. 
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achieve a pear-shaped form (see typically the central vortex pair for B = 0.941, Re = 

547 and B = 0.668, Re = 970). This shape is associated with a peak in ii. The maximum 
perturbation values here reach 60 O h  and 80 YO of the bulk velocity for the two Reynolds 
numbers considered, respectively, in both experiments and simulations. 

At larger streamwise distances what we may define as a quasi-parallel velocity profile 
(not strictly parallel according to the definition, but with slowly evolving structures) is 
attained by most of the vortex pairs (see, in particular, the central vortex pairs in 
figures 4 a  and 5a) ,  and is reached more rapidly at larger Reynolds numbers, in 
agreement with the experiments. The average amplitude of streamwise perturbation for 
Re = 547 saturates (figure 6) to the value of 0.2 in the experiments. In the quasi-parallel 
state, while regions of fluid of negative perturbation velocity in a cross-section are 
similar to each other, elongated regions of positive velocity near the outer wall have 
different intensity of perturbation and spanwise length. Individual wavelengths in the 
cross-section differ by up to 100% for the larger Reynolds number simulated. 

Events such as steady merging and/or splitting of vortex pairs are not observed 
because the test section is too short; however, Matsson & Alfredsson (1992) have 
shown experimentally that this is the case. The experimentally determined r.m.s. values 
of the streamwise perturbation velocity at different B differ slightly from the computed 
results. The reason has to be found in the fact that vortices at different stages of 
development (and therefore with different amplitudes of perturbation) coexist in each 
cross-section in both experiments and simulations. In the numerical simulations, where 
the complete spatial development is available, the fact of having vortices at different 
stages of growth is evidenced, for example, by the presence of inflexion points in the 
(ii, O)-planes of figure 6, close to B = 1.10 for Re = 547 and B = 0.75 for Re = 970. This 
is clarified in figure 7, where the streamwise disturbance velocity is plotted in a (z,  Re)- 
plane, where the radius R is chosen equal to 38.457, that is 0.1382 units of length away 
from the concave wall. One sees that the central vortex pair experiences a maximum 
in positive perturbation amplitude at RB w 40 (0 = 1.04) at Re = 547 and RB z 30 
(0 = 0.78) at Re = 970. Lateral pairs have a maximum in perturbation amplitude 
farther downstream. This development is consequent to the inlet condition, whereby 
the central vortex pairs at the entrance of the channel have a larger amplitude than the 
pairs near the periodic surface (z = 0,9). The results obtained at these two Reynolds 
numbers are steady. At such Re/Re,  ratios (respectively, 2.43 and 4.31) a secondary 
instability in the form of streamwise travelling waves (Kelleher et al. 1980; Finlay et 
al. 1987, 1988; Matsson et al. 1991, Matsson & Alfredsson 1992) is reported to occur. 
A secondary instability would have taken place if a proper time-dependent perturbation 
had been applied at the channel inlet to trigger the streamwise wave. This point will be 
discussed further in 46. 

Some of the computed vortices show a loss of symmetry about the vertical upwash 
plane. This is more apparent at the larger Reynolds number and in vortices that are in 
a quasi-parallel state but not at their most ‘energetic’ state (i.e. the perturbation lunetic 
energy of the vortex pair is not at a maximum level). This bending of the vortices comes 
from attraction or repulsion of neighbouring vortex pairs caused by the Eckhaus 
instability, which is operational at the Reynolds numbers considered (cf. also the 
experimental results showing vortex interactions in Matsson & Alfredsson 1992). 

The streamwise positions B of largest amplitude of perturbation ii correspond to 
those of largest spanwise-averaged (concave) wall shear stress, for both the Reynolds 
numbers examined. Figure 8 shows the development of wall shear stress lauprl,  for 
Re = 547 and 970, on the concave and convex walls. The values plotted are averages 
over the central vortex pair only, for 3.8 < z < 5.  Also, the wall shear at z = 4.4, 
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FIGURE 7. Streamwise perturbation velocity in an (Re ,  z)-plane at R = 38.457 for (a) Re = 547 and 
(6) Re = 970. Isoline spacing is 0.15 and the zero line is omitted. The horizontal scale is stretched by 
a factor of two as compared to the vertical scale. 

corresponding to the upwash plane of the central vortex pair, is shown. At small 
streamwise distances the average values computed over inner and outer walls 
correspond exactly to those of CCPF, that is, respectively, 6.053 and 5.948. The 
dimensionless wall shear for plane Poiseuille flow is 6. Deviation in wall shear from the 
value corresponding to CCPF starts first on the outer wall, which is the wall unstable 
according to Rayleigh circulation criterion (see also Floryan 1991). Tiny Gortler-like 
vortices, developing at first near the outer wall grow downstream ; as they grow they 
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FIGURE 8. Streamwise development of wall shear stress. 

affect the velocity distribution near the inner wall and modify accordingly the wall 
shear stress there. The average value of the wall stress increases up to a maximum on 
both curved walls; the maximum value depends on Re, and it is more than twice as 
large as the CCPF value at r = r,,, 8 = 0.73, Re = 970. This maximum corresponds 
closely to a maximum in positive streamwise perturbation velocity (cf, figure 7). 
Further downstream, the inner wall experiences a maximum in wall shear. Average 
values of wall shear on the curved walls decrease then to relative minima; the outer wall 
experiences a subsequent slow increase till the exit of the channel, while the inner wall 
reaches a quasi-constant value which is, for both Re shown, slightly larger than the one 
corresponding to plane Poiseuille flow. In the upwash plane, where the streamwise 
velocity of the fluid is low, the wall shear decreases rapidly to a minimum at 8 = 0.53 
(0.78) for Re = 970 (547). These points correspond to where the streamwise velocity 
reaches minimum values at z = 4.4 (cf. figure 7). Further downstream the wall shear in 
the low-speed region tends to rise and go towards an equilibrium value. The trends 
described apply to both Reynolds numbers examined; the development is faster for the 
large Reynolds number. It is noteworthy that the behaviour encountered closely 
resembles that described by Swearingen & Blackwelder (1987) for Gortler vortical flow 
for streamwise distances prior to the beginning of the secondary instability (cf. their 
figure 10). 

5. Continuously self-forced flow 
When only CCPF is imposed as a boundary condition at the inlet of the channel the 

situation encountered by Lowery & Reynolds (1986), Buell & Huerre (1988) and 
Huerre & Monkewitz (1990) may arise. It consists of a natural self-excited state that 
might be triggered, in a computational domain of finite streamwise extent, in the 
absence of external forcing at the inflow section. A persistent fluctuating field in the 
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FIGURE 9. Average velocity perturbation ii versus 0 in the continuously forced case at seven 

different instants in time. Splitting is represented by and merging by x . 

convectively unstable Dean flow could normally be maintained only by an external 
forcing. In the present case the self-excitation is generated by a global resonance in 
the domain. Buell & Huerre (1988) state that ‘the interaction between the vortical 
structures and the downstream boundary generates global irrotational pressure 
disturbances which are immediately transmitted to the inflow boundary. These are in 
turn converted into hydrodynamic instability waves by the inflow boundary condition ’. 
This mechanism is equivalent to continuously and unsteadily forcing the inlet flow. 

As shown by Guo & Finlay (1991), when perturbations are present the parallel Dean 
flow is always unstable to an Eckhaus instability for Re > 1.2Rec and y = 0.975. Here 
we treat the case Re = 2.43Rec = 547; as initial condition we apply CCPF throughout 
the computational domain, and allow round-off errors to act as infinitesimal 
perturbations to trigger the Dean instability. In figure 9, the variation of ij with 8 at 
different times is plotted. For t > 440 the curves are staggered in the vertical direction 
by an amount proportional to (2-440). Defects (merging and splitting) are present. 
They appear as ‘kinks’ (inflexion points or relative extrema) in the plots of figure 9, and 
some of them are indicated by A, B, C and D in figures 9 and 10. For example, there 
are three defects at t = 440 (cf. figures 9 and lob), and defect A moves to D at t = 462. 
Figure lO(b) shows defects already appearing near the inlet and propagating 
downstream at a speed approximately constant and equal to the bulk velocity of the 
flow. The movement of the defects is represented by the dashed lines in figure 9. The 
quantity ii is always equal to zero by definition at 8 = 0, but it may grow immediately 
past the entrance because of the acceleration caused by the pressure perturbations. The 
maximum amplitude of the fluctuating perturbation, which is continuously generated 
a little downstream of the inlet of the channel (i.e. before the beginning of the linear 
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FIGURE 1 1 .  A two-to-one merging process involving vortex pairs across the periodic boundary. 
Angular spacing between consecutive cross-sections is 0.025. Upstream section at the top. 

plotted and only random noise in w is present at t = 358 at the entrance of the channel 
(figure 10a). Dean vortices grow out of the noise for RO > 50 near the periodic 
boundary. At t = 440 (figure lob)  near the inflow boundary there is an organized 
structure which corresponds to the vortical structure forming near z = 4.5 and 
RB x 80 at t = 358. Furthermore, all the vortices in the cross-section for Re > 80 have 
moved in z by half a wavelength, so that the areas where w is positive at t = 358 have 
negative w at t = 440 and vice versa. This latter fact is due to the occurrence of defects. 
One such defect, a merging of vortex pairs, is noticeable, for example, in figure 10(b) 
(point C) near the exit of the channel and it  reduces the number of pairs across the span 
from seven (average wavenumber is equal to 4.89) to six (p = 4.19). Such defects 
represent an important phenomenon in the dynamics of longitudinal vortices. Both 
stationary (Matsson & Alfredsson 1990, 1992) and time-dependent (Ligrani & Niver 
1988) merging and splitting processes have been reported in the Dean flow literature. 
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FIGURE 12. A two-to-three splitting process halfway through the span of the channel. Same 
streamwise spacing as in figure 11. 

Similar events occur in the Gortler problem: Bippes (1978) describes the stationary 
appearance of new Gortler vortices that appear to ‘pop’ out of the concave wall in 
correspondence with the downwash plane of an existing pair, and on the steady 
merging of two neighbouring pairs into one new pair. Ito (communicated to Floryan 
1991, p. 266) and Peerhossaini & Wesfreid (1988) describe Gortler vortices that are 
not locked into place and wander throughout the cross-section. We may thus 
distinguish between two situations. If the vortices are triggered by stationary 
disturbances they lock into place and grow downstream. Eventually, two vortex pairs 
may merge into one or a new pair may grow out of the concave wall. If low-amplitude 
or fluctuating disturbances are present in the approaching flow the vortices are not 
locked into place and may seem to wander across the span because of repetitive 
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merging and splitting processes (see also 65.1). In both cases the underlying driving 
mechanism for merging and splitting events is the wavelength selection mechanism, 
which is related to the Eckhaus stability of the vortices with respect to spanwise 
perturbations (Guo & Finlay 1991). Loosely speaking, if two vortex pairs are too close 
to each other they may merge into one pair, and if they are too far apart a new pair 
grows to fill the gap between the two original pairs. 

Details of a merging event are presented in figure 11. There, for t = 440 and Re = 
547, it is seen how two vortex pairs across the periodic boundary proceed to annihilate 
two neighbouring counter-rotating cells. This corresponds to event C in figure 9, and 
Guo & Finlay (1991) call it a two-to-one merging. The process is not completed by the 
last section shown (which is the exit section of the channel) but we can see that 
significant distortion of the cells involved occurs and that a slight adjustment in the 
position of all neighbouring pairs takes place. The resulting flow has a low wavenumber 
and is itself unstable to the Eckhaus instability that will tend to increase the spanwise 
wavenumber. Figure 12 shows a two-to-three splitting. It takes place at t = 508 halfway 
through the span of the curved channel. A stagnation point (v = w = 0) is formed in 
a downwash plane and as it moves towards the inner wall two new cells are formed. 
This process has a left-right mirror symmetry with respect to the new radial upwash 
plane created, and it produces a similar cell distortion and spanwise adjustment as in 
the opposite event. 

5.1. Eckhaus resonant mechanism and defect-mediated turbulence 
Defects propagate in space and time. The multiplication of defects in time is initially 
slow but becomes faster as time progresses. In figure 13 we show isolines of u’ in the 
same cross-section (0 = 2.915) at several instants of time. Five, six or seven pairs may 
coexist in the cross-section at any given time. Vortices may remain aligned for several 
units of time (of the order of 100 s in physical time for experiments in air) early on, 
when a large degree of mirror symmetry about radial upwash planes is still present, and 
readjust their positions rapidly once merging or splitting takes place. This is in 
agreement with the observations of Ligrani & Niver (1988) who describe splitting of 
vortices and wavenumber readjustment to take place in less than 1 s. For t > 600 
defects start breaking symmetries and decorrelating patterns. This is due to the 
interaction of defects, and it is illustrated in figure 14. The structures shown are 
strikingly similar to those observed in near-wall turbulent boundary layers (see for 
example figure 12 in Johansson, Alfredsson & Kim 1991). Large regions of positive 
streamwise perturbation velocity are shown next to regions of thin negative 
perturbation, and considerable spanwise movement (due to pairing and generation of 
streaky structures) is present. Johansson et al. (1991) pointed out that the development 
of asymmetry in the spanwise direction is a dominating feature in the evolution of near- 
wall structures in turbulent shear flows. The same consideration applies to the present 
flow. The complex structures produced are a consequence of the continuous chaotic 
forcing imposed; it is the unsteadiness of the forcing which is fundamental for the 
dynamics of the defects, rather than its origin. It is expected that the same qualitative 
pattern evolution would have taken place if a different fluctuating inlet perturbation 
had been applied. 

Apart from qualitative similarities, we can scale the various dimensions of the 
observed structures in ‘wall units’ (by using a value of the streamwise wall shear stress 
averaged over the last thirty units of length in Re and over the whole spanwise length) 
and we recover dimensions typical of turbulent boundary layers (see e.g. Cantwell 
1981). The spanwise length of the domain covers a distance of 610 wall units, and since 
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FIGURE 13. Streamwise perturbation velocity in the cross-section at 0 = 2.915 at 11 different 
instants in time. Isoline increment is 0.15. 
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FIGURE 14. Streamwise perturbation velocity at f = 644 in an (Re, z)-plane, 9.4 viscous units of length 
away from the outer wall. Isoline increment is 0.05. The horizontal scale is stretched by 4.5. 

between five and seven vortex pairs are present at any given time, typical spanwise 
spacings between the streaky structures found vary from 87 to 122 wall units. 
Streamwise lengths of the vortices range from a few hundred wall units to some 
thousands (although the upper limit is not identifiable because of the limited length of 
the computational domain). The main difference from coherent structures in turbulent 
boundary layers lies in the fact that the present vortices occupy the whole channel 
cross-section and are not concentrated towards a wall. After the vortices are formed 
near the concave (unstable) surface and move away from the wall with increasing 13 (in 
a process that resembles an ejection), they eventually ‘feel’ the presence of the inner 
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FIGURE 15. Isolines of u in an (R0,z)-plane. Spacing is 0.1. 
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wall and react accordingly. This is the main difference between the present problem and 
the Gortler problem, where the vortices are not bound by two walls in the normal 
direction. In the case at hand the centre of the vortices is approximately halfway across 
the channel in the normal direction, which translates to about 34 wall units. According 
to Cantwell (1981) the centre of the streamwise vortices in turbulent boundary layers 
is between lOu/u, and 25v/u, where we denote by u, the friction velocity and by v the 
viscosity. The difference could possibly be explained by the fact that the inner wall in 
the Dean problem limits the growth of the vortical structure between two closely 
spaced walls, whereas in a turbulent boundary layer tiny longitudinal vortices are 
continuously created in the sublayer, grow downstream to a critical size and are 
convected away by the free stream. 

Finally, it is relevant to comment on the effect of sidewalls. A further simulation has 
been carried out for a channel of spanwise width equal to eighteen, but with no-slip 
solid boundaries at z = 0, 18. The number and distribution of grid points, initial and 
boundary conditions are the same as used so far in this section. In figure 15 isolines of 
streamwise velocity are shown at a time far enough away from the initial transient. 
Note the following: the flow is time-dependent and a sequence of merging and splitting 
processes occurs towards the exit of the channel, giving rise to uncorrelated patterns 
of low- and high-speed streaks. The defects are responsible for loss of symmetry of 
vortex pairs (when the vortices seem to bend), whereas the sidewall-induced Ekman 
vortices for 0 < Re < 50 remain stationary. The dynamics of the Dean vortices is again 
controlled by interaction mechanisms, as in the spanwise-periodic case. This shows 
that sidewalls, although constraining the flow, do not stabilize it. 

6. High-Reynolds-number steady flow 
When the Reynolds number is sufficiently large, a secondary instability, in the form 

of high-frequency short-wavelength travelling waves (‘twists ’), is reported to occur. 
The onset of the instability as a function of the Reynolds number, at fixed curvature 
ratio, varies according to the type of investigation (numerical or experimental) and the 
length of the experimental domain. The theoretical threshold according to the linear 
stability analysis of Finlay et al. (1987, 1988) is Re = 1.92Re, at y = 0.975. The basic 
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FIGURE 16. Average perturbation values of u, u, w as a function of 8. The six computational domains 
are indicated by the numbers 1-6, and the shaded regions are the regions of overlap between 
neighbouring computational domains. 

flow they considered was a parallel flow computed with a temporally developing 
Navier-Stokes solver. The experiments by Kelleher et al. (1980) indicate an 
approximate onset at a value of Re larger than 3Rec in a channel of angular opening 
equal to a and y = 0.979. Matsson & Alfredsson (1992) consider a longer channel 
( 1 . 5 ~ )  with y = 0.974, so that twists develop earlier (at Re x 2.8Rec). 

The only spatially developing simulation of Dean flow in a parameter space for 
which the secondary instability could exist, has been camed out by Matsson et al. 
(1991) for Re = 1455 (Re/Re, = 6.47) in a channel of angular extent equal to 1.75 and 
y = 0.974. They provided comparisons between experimental and computational 
results on three different cross-sections that showed very good agreement between 
individual vortex pairs. However, that simulation fails to capture the correct temporal 
and streamwise spatial scales of the motion because of insufficient resolution in 8. For 
a spatial simulation to resolve the whole flow properly from the inception of the Dean 
vortices past the onset of the streamwise wave (which has wavelength approximately 
equal to the width of the channel) requires a very high number of grid points in the 
streamwise direction. We have chosen to carry out such a simulation in a multiblock 
fashion. The technique used also provides some indirect arguments that reassure us as 
to the validity of the outflow boundary condition used. The complete computational 
domain has an angular extent equal to 3.64. Such a domain is divided into six partially 
overlapping subdomains as shown in figure 16, with Dirichlet inlet conditions applied 
at the inlet of each subdomain (and obtained, except for the first block, from the 
domain upstream) and convective outflow conditions applied at the exit boundary of 
each subdomain. The inlet condition on the first subdomain is CCPF. In the spanwise 
direction periodic conditions have been taken, with a spanwise length based on the 
average spanwise wavenumber found near the onset of the secondary instability in the 
experiments of Matsson & Alfredsson (1992); i.e. from their figure 15 one can find an 
average wavenumber B = 5.80. The cross-sectional grid has 302 points (uniformly 
distributed in z and smoothly concentrated near the walls in r), whereas each 
subdomain has 160 uniformly spaced nodes in 8. The time step for the simulation is 
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FIGURE 18. Wall shear stress on concave and convex boundaries as a function of 8. 

0.05 and four internal iterations are performed at each step. This is such that about 
four time steps are needed for an average fluid structure travelling in 8 at the bulk speed 
to be convected across one control volume. The Reynolds number is taken to be equal 
to 1500 (= 6.67Re,). 

The results are displayed in figures 16-18. Figure 16 shows the spatial evolution of 
the average pertubation velocities. All perturbation velocities increase to a maximum 
value until 8 x 1. Here, the negative streamwise perturbation velocity (shown in figure 
17) has a pear-like shape in the cross-section, whereas the positive streamwise 
perturbation velocity is elongated and concentrated towards the outer surface. As E 
decreases a splitting starts (8 > 1.25) from the convex wall. The beginning of the 
formation of a new vortex pair at ri coincides with a maximum of wall stress on the 
convex surface. As the splitting progresses the new pair moves towards the outer wall 
and the shear stress on the inner wall decreases. The formation of a vortex pair near 
the inner wall has also been reported by Finlay et al. (1987). Vortices generated at 
convex walls by centrifugal forces can be expected when the velocity distribution at the 
wall is non-monotonic, as in the case of a wall jet (Floryan 1991). The appearance of 
a new vortex pair contributes to a new increase of ii towards the approximately 
constant value of 0.25. Values of v and ware about one order of magnitude smaller 
than ii. Concerning the flow field, it is noteworthy that the two pairs of vortices 
coexisting in the cross-section oscillate (along 8, not in time) in the normal direction 
until their centres are approximately 0.38 units of length from the concave wall (see 
cf) in figures 16 and 17). Measured in wall units (by using the spanwise-averaged shear 
stress on the concave wall) this is equal to approximately 55. The average spanwise 
spacing is of 78 wall units at point (f) in figures 16 and 17, whereas at (b) (where a 
vortex doubling is incipient) the spanwise spacing is 170. The spacings between vortices 
are in the range of those found for coherent structures in turbulent boundary layers. 

It is important to point out that the flow field is stationary. This indicates, again, that 
merging and splitting of vortices are inherently steady events, as found in the detailed 
measurements of Matsson & Alfredsson (1992). Secondly, it indicates that the 
amplification of naturally occurring disturbances in a simulation (round-off errors) is 
too slow for the secondary instability to appear. To compute numerically a secondary 
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wavy instability with a spatial model one would need to introduce inlet perturbations 
of amplitudes typical of those encountered in experiments. The form of the 
perturbations should ideally be provided by the eigenfunctions of a secondary stability 
analysis. Some work along these lines has been undertaken by Le Cunff & Bottaro 
(1 992). 

These considerations lead us to the so-called receptivity problem, i.e. which 
eigenmodes will grow from background/environmental disturbances or, inversely, 
which background disturbances are responsible for flow phenomena observed 
experimentally. 

The following scenario emerges. 
(a) If the vortices are triggered by stationary disturbances (such as vortex generators 

or naturally occurring non-uniformities present in an experimental apparatus) they 
lock into place and grow downstream. Eventually they might merge steadily with 
neighbouring pairs or a new pair may form in the gap between two pairs. This is the 
case of the experiments of Matsson & Alfredsson (1992) and Bottaro et al. (1991) and 
it is attested to, in particular, by the fact that stationary non-uniformities at the inlet 
of their channel are responsible for (i) vortices that are always at the same spanwise 
positions at different Reynolds numbers, and (ii) events (in particular merging) that 
occur at the same spanwise locations at different Reynolds numbers. In the Gortler 
problem a similar situation may occur (Bippes 1978; T. Maxworthy 1990, personal 
communication). 

(b)  If low-amplitude fluctuating disturbances are present in the approaching flow 
the vortices are not locked into place and may seem to wander throughout the cross- 
section because of repetitive merging and splitting processes. Such an eventuality has 
been discussed theoretically by Guo & Finlay (199 1) through a linear stability analysis ; 
however, it should be remarked that the open nature of the flow and its receptivity 
characteristics cannot be completely accounted for in a stability analysis which 
considers a fully developed basic flow. Recent work by Y. Guo & W. H. Finlay (1992, 
personal communication) focuses on the kkhaus stability of the spatially developing 
flow. Repetitive merging and splitting events have been reported by Ito (communicated 
to Floryan 1991, p. 266) for the Gortler problem. Some video sequences showing 
continuous interactions of Gortler vortices have been realized by Peerhossaini & 
Wesfreid (see also their related article, 1988). In the Dean problem a repetitive 
sequence of merging and splitting processes have been discovered by Ligrani & Niver 
(1988). 

(c) A secondary instability in the form of streamwise travelling waves (Matsson & 
Alfredsson 1990) might be triggered above a critical Reynolds number when small 
perturbations in the incoming flow can be amplified. Disturbances of sufficient 
amplitude are typically and inherently present in most experimental apparatuses. In a 
temporally developing simulation perturbations may propagate and amplify con- 
tinuously through the periodic boundary. In the present spatially developing 
simulations a secondary instability was not detected for a Reynolds number as high as 
6.67ReC because of the very slow initial amplification of background disturbances. 

7. Summary 
The flow in a curved channel has been examined through three-dimensional spatially 

developing simulations. Although temporal simulations may provide qualitative 
information on several flow phenomena, it is clear that the open and convective nature 
of the flow is properly represented only through a spatial approach. Furthermore, it is 
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important to consider channels of large-aspect-ratio cross-section to allow vortex pairs 
to adjust their spanwise positions freely. The simulations performed show an excellent 
agreement with linear stability results up to fairly high disturbance values and a very 
good agreement with experimental data in the nonlinear regime. By adopting the 
spatial approach we have found that merging and splitting phenomena are inherently 
steady and take place over several streamwise units of length; in a temporal approach 
interactions of these kinds appear to be always unsteady. A continuous and unsteady 
sequence of interaction processes between neighbouring vortex pairs may take place if 
the inlet flow is randomly perturbed in time with infinitesimal spanwise disturbances 
(Guo & Finlay 1991). This process produces structures which closely resemble coherent 
structures in turbulent boundary layers. As in turbulent wall flows (Johansson et al. 
1991) an essential feature of longitudinal vortices is their spanwise movement. Similar 
spanwise shifts has been observed by Aubry et al. (1988) in their truncated simulations 
of the wall region of a turbulent boundary layer. The evolution of defects is probably 
one fundamental element of the breakdown process of longitudinal vortices and 
features of the flow described here are very close to those described by, among others, 
Coullet & Lega (1988), Coullet et al. (1989) and Bensimon et al. (1990). 

The study of the spatial development of Dean vortex flow has revealed several 
interesting aspects that might have a bearing on more complex flow situations. In 
particular, because of the similarities between the present structures and those found 
in transitional and turbulent wall flows, ideas of direct applicability to flow 
management (riblets, LEBUs, etc.) might arise and be tested. 
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